1.为什么用HashMap?
- HashMap是一个散列桶(数组和链表),它存储的内容是键值对(key-value)映射。
- HashMap采用了数组和链表的数据结构,能在查询和修改方便继承了数组的线性查找和链表的寻址修改。数组是用来确定桶的位置,利用元素的key的hash值对数组长度取模得到. 链表是用来解决hash冲突问题,当出现hash值一样的情形,就在数组上的对应位置形成一条链表。
- 用LinkedList代替数组结构可以么?
当然是可以的,稍微说明一下,此题的意思是,源码中是这样的
1 | Entry[] table = new Entry[capacity]; |
答案很明显,是可以的。
既然是可以的,为什么HashMap不用LinkedList,而选用数组?
因为用数组效率最高!在HashMap中,定位桶的位置是利用元素的key的哈希值对数组长度取模得到。此时,我们已得到桶的位置。显然数组的查找效率比LinkedList大。
- 那ArrayList,底层也是数组,查找也快啊,为啥不用ArrayList?
因为采用基本数组结构,扩容机制可以自己定义,HashMap中数组扩容刚好是2的次幂,在做取模运算的效率高。 而ArrayList的扩容机制是1.5倍扩容,那ArrayList为什么是1.5倍扩容这就不在本文说明了。 - HashMap是非synchronized,所以HashMap很快。
- HashMap可以接受null键和值,而Hashtable则不能(原因就是
equlas()
方法需要对象,因为HashMap是后出的API经过处理才可以) - 当链表转为红黑树后,什么时候退化为链表?
为6的时候退转为链表。中间有个差值7可以防止链表和树之间频繁的转换。假设一下,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低。
2.HashMap的工作原理是什么?
HashMap是基于hashing的原理,我们使用put(key, value)存储对象到HashMap中,使用get(key)从HashMap中获取对象。当我们给put()方法传递键和值时,我们先对键调用hashCode()方法,计算并返回的hashCode是用于找到Map数组的bucket位置来储存Node 对象。这里关键点在于指出,HashMap是在bucket中储存键对象和值对象,作为Map.Node。
- 以下是HashMap初始化 ,简单模拟数据结构
1
2
3
4
5
6
7
8
9
10
11
12
13Node[] table=new Node[16] 散列桶初始化,table
class Node {
hash;//hash值
key;//键
value;//值
node next;//用于指向链表的下一层(产生冲突,用拉链法)
}
put
过程(JDK1.8版)
- 对Key用HashCode()求Hash值,然后再计算下标
- 如果没有碰撞,直接放入桶中(碰撞的意思是计算得到的Hash值相同,需要放到同一个bucket中)
- 如果碰撞了,以链表的方式链接到后面
- 如果链表长度超过阀值( TREEIFY THRESHOLD==8),就把链表转成红黑树,链表长度低于6,就把红黑树转回链表
- 如果节点已经存在就替换旧值
- 如果桶满了(容量16*加载因子0.75),就需要 resize(扩容2倍后重排)
扩容后,元素要么是在原位置,要么是在原位置再移动2次幂的位置,且链表顺序不变。
Get过程
(考虑特殊情况如果两个键的hashcode相同,你如何获取值对象?)
当我们调用get()方法,HashMap会使用键对象的hashcode找到bucket位置,找到bucket位置之后,会调用keys.equals()方法去找到链表中正确的节点,最终找到要找的值对象。
3.有什么方法可以减少碰撞?
- 扰动函数可以减少碰撞,原理是如果两个不相等的对象返回不同的hashcode的话,那么碰撞的几率就会小些,这就意味着存链表结构减小,这样取值的话就不会频繁调用equal方法,这样就能提高HashMap的性能。(扰动即Hash方法内部的算法实现,目的是让不同对象返回不同hashcode。)
- 使用不可变的、声明作final的对象,并且采用合适的equals()和hashCode()方法的话,将会减少碰撞的发生。不可变性使得能够缓存不同键的hashcode,这将提高整个获取对象的速度,使用String,Interger这样的wrapper类作为键是非常好的选择。为什么String, Interger这样的wrapper类适合作为键?因为String是final的,而且已经重写了equals()和hashCode()方法了。不可变性是必要的,因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。
4.HashMap中hash函数怎么是是实现的?
我们可以看到在hashmap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。 所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式,我们来看看JDK1.8的源码是怎么做的.1
2
3
4
5
6
7
8
9
10
11static final int hash(Object key) {
if (key == null){
return 0;
}
int h;
h=key.hashCode();返回散列值也就是hashcode
// ^ :按位异或
// >>>:无符号右移,忽略符号位,空位都以0补齐
//其中n是数组的长度,即Map的数组部分初始化长度
return (n-1)&(h ^ (h >>> 16));
}
高16位异或低16位以后,进行取模运算
1.高16bit不变,低16bit和高16bit做了一个异或(得到的HashCode转化为32位的二进制,前16位和后16位低16bit和高16bit做了一个异或)
2.(n·1)&hash=->得到下标
- 为什么扩容是2的次幂?
HashMap为了存取高效,要尽量较少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现就在把数据存到哪个链表中的算法
这个算法实际就是取模,hash%length。 但是,大家都知道这种运算不如位移运算快。
因此,源码中做了优化hash&(length-1)。 也就是说hash%length==hash&(length-1)
5.拉链法导致的链表过深问题为什么不用二叉查找树代替,而选择红黑树?为什么不一直使用红黑树?
之所以选择红黑树是为了解决二叉查找树的缺陷,二叉查找树在特殊情况下会变成一条线性结构(这就跟原来使用链表结构一样了,造成很深的问题),遍历查找会非常慢。而红黑树在插入新数据后可能需要通过左旋,右旋、变色这些操作来保持平衡,引入红黑树就是为了查找数据快,解决链表查询深度的问题,我们知道红黑树属于平衡二叉树,但是为了保持“平衡”是需要付出代价的,但是该代价所损耗的资源要比遍历线性链表要少,所以当长度大于8的时候,会使用红黑树,如果链表长度很短的话,根本不需要引入红黑树,引入反而会慢。
6.对红黑树的见解?
- 节点是红色或黑色。
- 根节点是黑色。
- 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
- 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
7.解决hash 碰撞还有那些办法?
比较出名的有四种 (1)开放定址法 (2)链地址法 (3)再哈希法 (4)公共溢出区域法
- 开放定址法
开放定址法就是一旦发生了冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到,并将记录存入。 - 链地址法
将哈希表的每个单元作为链表的头结点,所有哈希地址为i的元素构成一个同义词链表。即发生冲突时就把该关键字链在以该单元为头结点的链表的尾部。 - 再哈希法
当哈希地址发生冲突用其他的函数计算另一个哈希函数地址,直到冲突不再产生为止。 - 建立公共溢出区
将哈希表分为基本表和溢出表两部分,发生冲突的元素都放入溢出表中。
下面给一个线性探查法的例子
问题:已知一组关键字为(26,36,41,38,44,15,68,12,06,51),用除余法构造散列函数,用线性探查法解决冲突构造这组关键字的散列表
解答:为了减少冲突,通常令装填因子α由除余法因子是13的散列函数计算出的上述关键字序列的散列地址为(0,10,2,12,5,2,3,12,6,12)。
- 前5个关键字插入时,其相应的地址均为开放地址,故将它们直接插入T[0],T[10),T[2],T[12]和T[5]中。
- 当插入第6个关键字15时,其散列地址2(即h(15)=15%13=2)已被关键字41(15和41互为同义词)占用。故探查h1=(2+1)%13=3,此地址开放,所以将15放入T[3]中。
- 当插入第7个关键字68时,其散列地址3已被非同义词15先占用,故将其插入到T[4]中。
- 当插入第8个关键字12时,散列地址12已被同义词38占用,故探查hl=(12+1)%13=0,而T[0]亦被26占用,再探查h2=(12+2)%13=1,此地址开放,可将12插入其中。
- 类似地,第9个关键字06直接插入T[6]中;而最后一个关键字51插人时,因探查的地址12,0,1,…,6均非空,故51插入T[7]中。
8.如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?
默认的负载因子大小为0.75,也就是说,当一个map填满了75%的bucket时候,和其它集合类(如ArrayList等)一样,将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing,因为它调用hash方法找到新的bucket位置。这个值只可能在两个地方,一个是原下标的位置,另一种是在下标为 <原下标+原容量> 的位置
9.重新调整HashMap大小存在什么问题吗?
- 当扩容重新调整HashMap大小的时候,确实存在条件竞争,因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。因为直接插入的效率更高。如果条件竞争发生了,那么就死循环了。(多线程的环境下不使用HashMap)。
- 为什么多线程会导致死循环,它是怎么发生的?
HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。这时候,HashMap需要扩展它的长度,也就是进行Resize。1.扩容:创建一个新的Entry空数组,长度是原数组的2倍。2.ReHash:遍历原Entry数组,把所有的Entry重新Hash到新数组。
HashMap 扩容的时候会调用 resize() 方法,就是这里的并发操作容易在一个桶上形成环形链表;这样当获取一个不存在的 key 时,计算出的 index 正好是环形链表的下标就会出现死循环。
在HashMap1.7之前是头插法,在扩容的过程中,可能会造成一个resize()的方法,然后调用transfer()方法,把里面的Entry进行了Rehash,在过程中,可能会造成链表的循环,在一下次Get()中出现死循环,或者出现没有加锁,所以数据不安全
10.HashTable
数组 + 链表方式存储
默认容量: 11(质数为宜)
Put:
- 对key的hashCode()做hash运算,计算index; 如果没碰撞直接放到bucket里; 如果碰撞了,以链表的形式存在buckets后; 如果碰撞导致链表过长(大于等于TREEIFY_THRESHOLD),就把链表转换成红黑树(JDK1.8中的改动); 如果节点已经存在就替换old value(保证key的唯一性) 如果bucket满了(超过load factor*current capacity),就要resize。
- 索引计算 : (key.hashCode() & 0x7FFFFFFF)% table.length
- 若在链表中找到了,则替换旧值,若未找到则继续
- 当总元素个数超过容量*加载因子时,扩容为原来 2 倍并重新散列。
- 将新元素加到链表头部,对修改 Hashtable 内部共享数据的方法添加了 synchronized,保证线程安全。
对key的hashCode()做hash运算,计算index; 如果在bucket里的第一个节点里直接命中,则直接返回; 如果有冲突,则通过key.equals(k)去查找对应的Entry;Get:
• 若为树,则在树中通过key.equals(k)查找,O(logn);
• 若为链表,则在链表中通过key.equals(k)查找,O(n)。
11.HashMap ,HashTable 区别
- 默认容量不同。扩容不同
- 线程安全性,HashTable 安全
- 效率不同 HashTable 要慢因为加锁
12.可以使用CocurrentHashMap来代替Hashtable吗?
我们知道Hashtable是synchronized的,但是ConcurrentHashMap同步性能更好,因为它仅仅根据同步级别对map的一部分进行上锁。ConcurrentHashMap当然可以代替HashTable,但是HashTable提供更强的线程安全性。它们都可以用于多线程的环境,但是当Hashtable的大小增加到一定的时候,性能会急剧下降,因为迭代时需要被锁定很长的时间。因为ConcurrentHashMap引入了分割(segmentation),不论它变得多么大,仅仅需要锁定map的某个部分,而其它的线程不需要等到迭代完成才能访问map。简而言之,在迭代的过程中,ConcurrentHashMap仅仅锁定map的某个部分,而Hashtable则会锁定整个map。
13.CocurrentHashMap(1.8)
- 其中抛弃了原有的 Segment 分段锁,而采用了
CAS + synchronized
来保证并发安全性。 - 其中的 val next 都用了
volatile
修饰,保证了可见性 - 最大特点是引入了 CAS(借助 Unsafe 来实现【native code】)
CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。 CAS 会出现的问题:ABA
解决:对变量增加一个版本号,每次修改,版本号加 1,比较的时候比较版本号。
####Put过程
根据 key 计算出 hashcode 。判断是否需要进行初始化。
- 通过 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
- 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
- 如果都不满足,则利用 synchronized 锁写入数据。
如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树。
Get过程
根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。
- 如果是红黑树那就按照树的方式获取值。
- 都不满足那就按照链表的方式遍历获取值。
14.TreeMap
TreeMap 则是基于红黑树的一种提供顺序访问的 Map,和HashMap不同,它的get、put、remove之类操作都是O(logn)的复杂度,具体顺序可以由指定的Comparator来决定,或者根据键的自然顺序来判断
15.hash算法是干嘛的?还知道哪些hash算法?
Hash函数是指把一个大范围映射到一个小范围。把大范围映射到一个小范围的目的往往是为了节省空间,使得数据容易保存。
比较出名的算法有SHA,MD4、MD5等
说说String中hashcode的实现?1
2
3
4
5
6
7
8
9
10
11
12public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}
- String类中的hashCode计算方法还是比较简单的,就是以31为权,每一位为字符的ASCII值进行运算,用自然溢出来等效取模。
- 哈希计算公式可以计为
+ s[1]*31^(n-2) + ... + s[n-1]``` 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
* 那为什么以31为质数呢?
主要是因为31是一个奇质数,所以```31*i=32*i-i=(i<<5)-i```,这种位移与减法结合的计算相比一般的运算快很多。
## 16.健可以为Null值么?
可以,key为null的时候,hash算法最后的值以0来计算,也就是放在数组的第一个位置。
## 17.一般用什么作为HashMap的key?
一般用Integer、String这种不可变类当HashMap当key,而且String最为常用。
• (1) 因为字符串是不可变的,所以在它创建的时候hashcode就被缓存了,不需要重新计算。这就使得字符串很适合作为Map中的键,字符串的处理速度要快过其它的键对象。这就是HashMap中的键往往都使用字符串。
• (2) 因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的,这些类已经很规范的覆写了hashCode()以及equals()方法。
## Hashcode
* 一、hashCode简介
public int hashCode():``hashCode``是根类Obeject中的方法。默认情况下,Object中的``hashCode() ``返回对象的32位jvm内存地址。也就是说如果对象不重写该方法,则返回相应对象的32为JVM内存地址。
* 二、hashCode注意点
关于hashCode方法,一致的约定是:
1、重写了``euqls``方法的对象必须同时重写``hashCode()``方法。
2、如果两个对象equals相等,那么这两个对象的HashCode一定也相同
3、如果两个对象的HashCode相同,不代表两个对象就相同,只能说明这两个对象在散列存储结构中,存放于同一个位置
* 三、hashCode作用
从Object角度看,JVM每new一个Object,它都会将这个Object丢到一个Hash表中去,这样的话,下次做Object的比较或者取这个对象的时候(读取过程),它会根据对象的HashCode再从Hash表中取这个对象。这样做的目的是提高取对象的效率。若HashCode相同再去调用equal。
HashCode是用于查找使用的,而equals是用于比较两个对象的是否相等的。
* 四、为什么重写
实际开发的过程中在hashmap或者hashset里如果不重写的hashcode和equals方法的话会导致我们存对象的时候,把对象存进去了,取的时候却取不到想要的对象。
重写了hashcode和equals方法可以迅速的在hashmap中找到键的位置;
#### **重写hashcode是为了保证相同的对象会有相同的hashcode;**
#### **重写equals是为了保证在发生冲突的情况下取得到Entry对象(也可以理解是key或是元素)**;
存在一个table数组,里面每个元素都是一个node链表,当添加一个元素(key-value)时,就首先计算元素key的hash值,通过table的长度和key的hash值进行与运算得到一个index,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时就把这个元素添加到同一hash值的node链表的链尾,他们在数组的同一位置,但是形成了链表,同一各链表上的Hash值是相同的,所以说数组存放的是链表。而当链表长度大于等于8时,链表就可能转换为红黑树,这样大大提高了查找的效率。
<p><img src="https://img-blog.csdnimg.cn/20191102133424361.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTM1ODMzMTE=,size_16,color_FFFFFF,t_70" alt="存储结构" /></p>
```Java
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; //可以看得出这是一个链表
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
*
*
*
}
transient Node<K,V>[] table;
数据域
1 | private static final long serialVersionUID = 362498820763181265L; |
HashMap构造函数允许用户传入容量不是2的n次方,因为它可以自动地将传入的容量转换为2的n次方。
###
Put()
源码1 | public V put(K key, V value) { |
- 下面简单说下put()流程:
- 判断键值对数组table[]是否为空或为null,否则以默认大小resize();
- 根据键key计算hash值与table的长度进行与运算得到插入的数组索引 index,如果tab[index] == null,直接根据key-value新建node添加,否则转入3
- 判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理
- 为啥头插法为什么要换成尾插:jdk1.7时候用头插法可能是考虑到了一个所谓的热点数据的点(新插入的数据可能会更早用到);找到链表尾部的时间复杂度是 O(n),或者需要使用额外的内存地址来保存链表尾部的位置,头插法可以节省插入耗时。但是在扩容时会改变链表中元素原本的顺序,以至于在并发场景下导致链表成环的问题。
- 从putVal()源码可以看出,HashMap并没有对null的键值对做限制(hash值设为0),即HashMap允许插入键尾null的键值对。但在JDK1.8之前HashMap使用第0个node存放键为null的键值对。
- 确定node下标:通过table的长度和key的hash进行与运算得到一个index。
- 在转变成红黑树树之前,还会有一次判断,只有键值对数量大于 64 才会发生转换,否者直接扩容。这是为了避免在HashMap建立初期,多个键值对恰好被放入了同一个链表中而导致不必要的转化。
大多数人不知道的:HashMap链表成环的原因和解决方案
get()操作源码解析
1 | public V get(Object key) { |
- get(key)方法首先获取key的hash值,
- 计算hash & (table.len - 1)得到在链表数组中的位置,
- 先判断node链表(桶)中的第一个节点的key是否与参数key相等,
- 不等则判断是否已经转为红黑树,若转为红黑树则在红黑树中查找,
- 如没有转为红黑树就遍历后面的链表找到相同的key值返回对应的Value值即可。
resize()操作源码解析
1 | // 初始化或者扩容之后的元素调整 |
HashMap 的工作原理是什么?
HashMap基于hashing原理,我们通过put()和get()方法存储和获取对象。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,然后找到bucket位置来存储值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用链表来解决碰撞问题,当发生碰撞了,对象将会存储在链表的第一个节点,链接原先的对象节点,HashMap在每个链表节点中存储键值对对象。
快速失败 (fail-fast) 和安全失败 (fail-safe) 的区别是什么?
- 1、快速失败(fail-fast)
在用迭代器遍历一个集合对象时,如果遍历过程中对集合对象的内容进行修改(增加、删除、修改),则会抛出Concurrent Modification Exception.
原理:迭代器在遍历时直接访问集合中的内容,并且在遍历过程中使用一个modCount变量。集合在被遍历期间如果内容发生变化,就会改变modCount的值。每当迭代器使用hashNext()/next()遍历下一个元素之前,都会检测modCount变量是否为expectedmodCount值,是的话就返回遍历;否则抛出异常,终止遍历。
注意:这里异常的抛出条件是检测到modCount!=expectedmodCount这个条件。如果集合发生变化时修改modCount值刚好又设置为了expectedmodCount值,则异常不会抛出。因此,不能依赖于这个异常是否抛出而进行并发操作的编程,这个异常只建议用于检测并发修改的bug。
场景:java.util包下的集合类都是快速失败的,不能在多线程下发生并发修改(迭代过程中被修改)。 - 2、安全失败(fail-safe)
采用安全失败机制的集合容器,在遍历时不是直接在集合内容上访问的,而是先复制原有集合内容,在拷贝的集合上进行遍历。
原理:由于迭代时是对原集合的拷贝进行遍历,所以在遍历过程中对原集合所作的修改并不能被迭代器检测到,所以不会触发Concurrent Modification Exception。
缺点:基于拷贝内容的优点是避免了Concurrent Modification Exception,但同样地,迭代器并不能访问到修改后的内容,即:迭代器遍历的是开始遍历那一刻拿到的集合拷贝,在遍历期间原集合发生的修改迭代器是不知道的
场景:java.util.concurrent包下的容器都是安全失败,可以在多线程下并发使用,并发修改。